What is the radius of convergence of sum_1^oox/n^2?
1 Answer
Nov 21, 2015
Infinite
Explanation:
The
sum_(n=1)^oo x/n^2 = x sum_(n=1)^oo 1/n^2 = x*pi^2/6
Proving that
sum_(n=1)^N 1/n^2 < 1+sum_(n=1)^N 1/(n(n+1))
= 1+sum_(n=1)^N (1/n-1/(n+1))
= 1+sum_(n=1)^N 1/n - sum_(n=1)^N 1/(n+1)
= 1+sum_(n=1)^N 1/n - sum_(n=2)^(N+1) 1/n
= 2 + color(red)(cancel(color(black)(sum_(n=2)^N 1/n))) - color(red)(cancel(color(black)(sum_(n=2)^N 1/n))) - 1/(N+1)
= 2-1/(N+1) -> 2 asN->oo