What is the radius of convergence of sum_1^oo (x-1)^n / 2^(2n)??

1 Answer
Jul 9, 2016

3 < x < 5

Explanation:

sum_1^oo (x-1)^n / 2^(2n)=sum_1^oo ((x-1)/4)^n

Making y = (x-1)/4

sum_1^oo (x-1)^n / 2^(2n) equiv sum_1^oo y^n

We know that for abs y < 1

sum_1^oo y^n = 1/(1-y)

or equivalently

sum_1^oo (x-1)^n / 2^(2n)=4/(5-x) for abs((x-1)/4)<1 or 3 < x < 5