What is the limit where #lim_(x → 1) (sqrt(3+x)-sqrt(5-x))/(x^2-1)#?

#(sqrt(3+x)-sqrt(5-x))/(x^2-1)#

1 Answer
Apr 5, 2018

# 1/4#.

Explanation:

#"The Reqd. Lim."=lim_(x to 1){sqrt(3+x)-sqrt(5-x)}/(x^2-1)#,

#=lim{sqrt(3+x)-sqrt(5-x)}/(x^2-1)xx{sqrt(3+x)+sqrt(5-x)}/{sqrt(3+x)+sqrt(5-x)}#,

#=lim{(3+x)-(5-x)}/{(x^2-1)(sqrt(3+x)+sqrt(5-x))}#,

#=lim{2cancel((x-1))}/{cancel((x-1))(x+1)(sqrt(3+x)+sqrt(5-x))}#,

#=lim_(x to 1)2/{(x+1)(sqrt(3+x)+sqrt(5-x))}#,

#=2/{(1+1)(sqrt(3+1)+sqrt(5-1))#.

# rArr "The Reqd. Lim."=1/4#.