What is the limit where lim_(x → 0) (sqrt(a+x) - sqrta)/(xsqrt(a(a+x)?

(sqrt(a+x) - sqrta)/(xsqrt(a(a+x))

1 Answer
Apr 9, 2018

L=sqrta/(2a^2)

Explanation:

Here,

L=lim_(xto0) (sqrt(a+x)-sqrta)/(xsqrt(a(a+x))

=lim_(xto0) (sqrt(a+x)- sqrta)/(xsqrt(a(a+x)))xx(sqrt(a+x)+sqrta)/(sqrt(a+x)+sqrta)

=lim_(xto0) (cancela+x- cancela)/(xsqrt(a(a+x)))xx1/(sqrt(a+x)+sqrta

=lim_(xto0)cancelx/(cancelxsqrt(a(a+x))(sqrt(a+x)+sqrta)

=lim_(xto0)1/(sqrt(a(a+x))(sqrt(a+x)+sqrta)

=1/(sqrt(a(a+0))*(sqrt(a+0)+sqrta)

=1/(sqrt(a^2)(sqrta+sqrta)

=1/(a(2sqrta)

=sqrta/(2a^2)