What is the limit of #[(5^x)-1]/x# as #x# approaches #0#?
2 Answers
Explanation:
Use:
#e^t = 1+t+t^2/2+t^3/6+t^4/24+... = sum_(k=0)^oo t^k/(k!)#
Note that:
#5^x = (e^(ln 5))^x = e^(x ln 5)#
Let:
#t = x ln 5#
Then:
#(5^x-1)/x = ((e^t-1)/t)ln 5#
Now:
#(e^t-1)/t = ((sum_(k=0)^oo t^k/(k!)) - 1)/t#
#color(white)((e^t-1)/t) = ((sum_(k=0)^oo t^k/(k!)) - 1)/t#
#color(white)((e^t-1)/t) = (sum_(k=1)^oo t^k/(k!))/t#
#color(white)((e^t-1)/t) = sum_(k=1)^oo t^(k-1)/(k!)#
#color(white)((e^t-1)/t) = sum_(k=0)^oo t^k/((k+1)!)#
#color(white)((e^t-1)/t) = 1+sum_(k=1)^oo t^k/((k+1)!)#
So:
#lim_(t->0) (e^t-1)/t = 1+lim_(t->0) (sum_(k=1)^oo t^k/((k+1)!))= 1+0 = 1#
and:
#lim_(x->0) (5^x-1)/x = lim_(t->0) ((e^t-1)/t) ln 5 = ln 5#
See below.
Explanation:
From the differential definition
making