What is the inverse of y=3log(5x)-ln(5x^3)? ?

1 Answer
Jun 22, 2016

y = 1.33274 xx10^((-0.767704 x)/3) for 0 < x < oo

Explanation:

Supposing that log a = log_{10}a, ln a = log_e a

For 0 < x < oo

y = log_e(5x)^3/log_e 10-log_e(5x)^3+log_e 25

y log_e10 = (1-log_e10)log_e(5x)^3+log_e25 xxlog_e 10

log_e(5x)^3=(y log_e10 - log_e25 xxlog_e 10)/ (1-log_e10)

(5x)^3=c_0e^{c_1y}

where c_0 = e^(-(log_e25 xxlog_e 10)/ (1-log_e10))
and c_1 = log_e10/(1-log_e10)

Finally

x = 1/5 c_0^{1/3} xx e^{c_1/3 y}

or

x = 1.33274 xx10^((-0.767704 y)/3)

Red y=3log(5x)-ln(5x^3)
Blue y = 1.33274 xx10^((-0.767704 x)/3)

enter image source here