What is the interval of convergence of sum_1^oo (x^n *n^n)/(n!)?

1 Answer
Nov 5, 2015

(-1/e, 1/e) or possibly [-1/e, 1/e]

Explanation:

Let a_n = n^n/(n!)

Then:

a_(n+1) = (n+1)^(n+1)/((n+1)!) = (n+1)^n/(n!)=((n+1)/n)^n n^n/(n!)

=(1+1/n)^n a_n

Now (1+1/n)^n -> e as n->oo

So: (x^(n+1)*(n+1)^(n+1))/((n+1)!) -: (x^n*n^n) / (n!) = (a_(n+1)/a_n)x -> ex as n->oo

Hence if abs(x) < 1/e then sum_(n=0)^oo (x^n*n^n) / (n!) is absolutely convergent.

If abs(x) > 1/e then EE N in ZZ such that:

abs((x^(n+1)*(n+1)^(n+1))/((n+1)!) -: (x^n*n^n) / (n!)) > 1 for all n >= N

so the sum diverges.

I am not sure about the case abs(x) = 1/e, since (1+1/n)^n < e for all n in NN.