What is the interval of convergence of sum_1^oo [(-x)^(2n+1)]/[(2n+1)!]?

1 Answer
Jan 5, 2017

The interval of convergence is x in ] -oo,+oo [

Explanation:

We use the ratio test

If the lim_(n->oo)∣a_(n+1)/a_n∣=L

If L<1, then sum_1 ^oa_n converges

If L>1, then sum_1 ^oa_n diverges

If L=1, the test is inconclusive

(∣a_(n+1)/a_n∣) =(∣((-x)^(2(n+1)+1)/((2(n+1)+1)!))/((-x)^(2n+1)/((2n+1)!))∣)

Now, we calculate the limits

lim_(n->oo)(∣((-x)^(2(n+1)+1)/((2(n+1)+1)!))/((-x)^(2n+1)/((2n+1)!))∣)

=lim_(n->oo)(∣((-x)^(2n+3)/((2n+3)!))/((-x)^(2n+1)/((2n+1)!))∣)

=lim_(n->oo)(∣((-x)^(2n+3)/((-x)^(2n+1))*(((2n+1)!)/((2n+3)!))∣)

=lim_(n->oo)(∣x^2*(1/((2n+3)(2n+2))∣)

=lim_(n->oo)(∣x^2*(1/((2n+3)2(n+1))∣)

=∣(x^2/2)∣*lim_(n->oo)(∣1/((2n+3)(n+1))∣)

=∣(x^2/2)∣*0

=0

Therefore,

L<1, for every x,

So sum_1 ^oox^(2n+1)/((2n+1)!) converges for all x

The interval is -oo < x <+oo