We use the ratio test
If the lim_(n->oo)∣a_(n+1)/a_n∣=L
If L<1, then sum_1 ^oa_n converges
If L>1, then sum_1 ^oa_n diverges
If L=1, the test is inconclusive
(∣a_(n+1)/a_n∣) =(∣(x^(2(n+1)+1)/((2(n+1)+1)!))/(x^(2n+1)/((2n+1)!))∣)
Now, we calculate the limits
lim_(n->oo)(∣(x^(2(n+1)+1)/((2(n+1)+1)!))/(x^(2n+1)/((2n+1)!))∣)
=lim_(n->oo)(∣(x^(2n+3)/((2n+3)!))/(x^(2n+1)/((2n+1)!))∣)
=lim_(n->oo)(∣(x^(2n+3)/(x^(2n+1))*(((2n+1)!)/((2n+3)!))∣)
=lim_(n->oo)(∣x^2*(1/((2n+3)(2n+2))∣)
=lim_(n->oo)(∣x^2*(1/((2n+3)2(n+1))∣)
=∣(x^2/2)∣*lim_(n->oo)(∣1/((2n+3)(n+1))∣)
=∣(x^2/2)∣*0
=0
Therefore,
L<1, for every x,
So sum_1 ^oox^(2n+1)/((2n+1)!) converges for all x
The interval is -oo < x <+oo