What is the interval of convergence of sum_1^oo [x^(2n+1)]/[(2n+1)!]?

1 Answer
Jan 4, 2017

The interval of convergence is -oo < x <+oo

Explanation:

We use the ratio test

If the lim_(n->oo)∣a_(n+1)/a_n∣=L

If L<1, then sum_1 ^oa_n converges

If L>1, then sum_1 ^oa_n diverges

If L=1, the test is inconclusive

(∣a_(n+1)/a_n∣) =(∣(x^(2(n+1)+1)/((2(n+1)+1)!))/(x^(2n+1)/((2n+1)!))∣)

Now, we calculate the limits

lim_(n->oo)(∣(x^(2(n+1)+1)/((2(n+1)+1)!))/(x^(2n+1)/((2n+1)!))∣)

=lim_(n->oo)(∣(x^(2n+3)/((2n+3)!))/(x^(2n+1)/((2n+1)!))∣)

=lim_(n->oo)(∣(x^(2n+3)/(x^(2n+1))*(((2n+1)!)/((2n+3)!))∣)

=lim_(n->oo)(∣x^2*(1/((2n+3)(2n+2))∣)

=lim_(n->oo)(∣x^2*(1/((2n+3)2(n+1))∣)

=∣(x^2/2)∣*lim_(n->oo)(∣1/((2n+3)(n+1))∣)

=∣(x^2/2)∣*0

=0

Therefore,

L<1, for every x,

So sum_1 ^oox^(2n+1)/((2n+1)!) converges for all x

The interval is -oo < x <+oo