What is the interval of convergence of sum_1^oo ( (x+2)^n)/n^n ?

1 Answer
Nov 22, 2017

See below.

Explanation:

Using the Stirling asymptotic approximation

n! approx sqrt(2pin)(n/e)^n we have for large n values

(x+2)^n/n^n approx sqrt(2pi n) ((x+2)/e)^n/(n!) = sqrt(2pi)((x+2)/e)((x+2)/e)^(n-1)/((n-1)! n^(1/2)) or

(x+2)^n/n^n le sqrt(2pi)((x+2)/e)((x+2)/e)^(n-1)/((n-1)!) and then asymptotically

sum_(n=1)^oo (x+2)^n/n^n le sqrt(2pi)((x+2)/e)e^((x+2)/e) which is convergent for all x in RR