What is the interval of convergence of sum_1^oo [(2^n)(x^n)]/sqrt(n) ?
1 Answer
Explanation:
We will use the result that:
sum_(n=1)^oo 1/n^alpha" " converges if and only ifalpha > 1
Note that:
(2^n)(x^n) = (2x)^n
If
sum_(n=1)^oo ((2^n)(x^n)) / sqrt(n) >= sum_(n=1)^oo 1/sqrt(n)" " which diverges.
If
sum_(n=1)^oo (2x)^n / sqrt(n) <= sum_(n=1)^oo (2x)^n = 1/(1-2x)" " converges.
So:
sum_(n=1)^oo (2x)^n / sqrt(n)" " is absolutely convergent for-1/2 < x < 1/2
Next, note that:
1/sqrt(n) - 1/sqrt(n+1) = (sqrt(n+1) - sqrt(n))/(sqrt(n)sqrt(n+1))
color(white)(1/sqrt(n) - 1/sqrt(n+1)) = (sqrt(n+1) - sqrt(n))/(sqrt(n)sqrt(n+1)) * (sqrt(n+1) + sqrt(n))/(sqrt(n+1) + sqrt(n))
color(white)(1/sqrt(n) - 1/sqrt(n+1)) = 1/(sqrt(n)sqrt(n+1)(sqrt(n+1) + sqrt(n))
color(white)(1/sqrt(n) - 1/sqrt(n+1)) < 1/(2 n^(3/2))
Hence if
sum_(n=1)^oo (2x)^n / sqrt(n) = sum_(n=1)^oo (-1)^n/sqrt(n) < sum_(n=1)^oo 1/(2n^(3/2))" " converges
If
abs(2x)^N > sqrt(N+1)/sqrt(N)
and hence:
sum_(n=1)^oo (2x)^n / sqrt(n)" " diverges
(by comparison with a geometric series)