What is the interval of convergence of sum_1^oo [(2^n)(x^n)]/sqrt(n) ?

1 Answer
Oct 7, 2016

[-1/2, 1/2)

Explanation:

We will use the result that:

sum_(n=1)^oo 1/n^alpha" " converges if and only if alpha > 1

Note that:

(2^n)(x^n) = (2x)^n

If x >= 1/2 then:

sum_(n=1)^oo ((2^n)(x^n)) / sqrt(n) >= sum_(n=1)^oo 1/sqrt(n)" " which diverges.

If 0 <= x < 1/2 then 0 <= 2x < 1 and

sum_(n=1)^oo (2x)^n / sqrt(n) <= sum_(n=1)^oo (2x)^n = 1/(1-2x)" " converges.

So:

sum_(n=1)^oo (2x)^n / sqrt(n)" " is absolutely convergent for -1/2 < x < 1/2

Next, note that:

1/sqrt(n) - 1/sqrt(n+1) = (sqrt(n+1) - sqrt(n))/(sqrt(n)sqrt(n+1))

color(white)(1/sqrt(n) - 1/sqrt(n+1)) = (sqrt(n+1) - sqrt(n))/(sqrt(n)sqrt(n+1)) * (sqrt(n+1) + sqrt(n))/(sqrt(n+1) + sqrt(n))

color(white)(1/sqrt(n) - 1/sqrt(n+1)) = 1/(sqrt(n)sqrt(n+1)(sqrt(n+1) + sqrt(n))

color(white)(1/sqrt(n) - 1/sqrt(n+1)) < 1/(2 n^(3/2))

Hence if x=-1/2 then:

sum_(n=1)^oo (2x)^n / sqrt(n) = sum_(n=1)^oo (-1)^n/sqrt(n) < sum_(n=1)^oo 1/(2n^(3/2))" " converges

If x < -1/2 then EE N such that:

abs(2x)^N > sqrt(N+1)/sqrt(N)

and hence:

sum_(n=1)^oo (2x)^n / sqrt(n)" " diverges

(by comparison with a geometric series)