What is the interval of convergence of sum_1^oo ((-1)^(n-1)*x^(n+1))/((n+1)!)?
1 Answer
Apr 30, 2018
Use the ratio test to detmeurine the radius of convergence first:
L = lim_(n-> oo) (((-1)^(n)x^(n + 2))/((n + 2)!))/(((-1)^(n - 1)x^(n + 1))/((n + 1)!)
L = lim_(n->oo) (-1(x))/(n + 2)
Take the absolute value.
L = |x|lim_(n->oo) 1/(n + 2)
L = |x| (0)
L = 0
This converges for all values of
The interval of convergence is therefore
Hopefully this helps!