What is the interval of convergence of sum_1^oo ((-1)^(n-1)*x^(n+1))/((n+1)!)?

1 Answer
Apr 30, 2018

Use the ratio test to detmeurine the radius of convergence first:

L = lim_(n-> oo) (((-1)^(n)x^(n + 2))/((n + 2)!))/(((-1)^(n - 1)x^(n + 1))/((n + 1)!)

L = lim_(n->oo) (-1(x))/(n + 2)

Take the absolute value.

L = |x|lim_(n->oo) 1/(n + 2)

L = |x| (0)

L = 0

This converges for all values of x, because the ratio test came back between 0 and 1.

The interval of convergence is therefore (-oo, oo).

Hopefully this helps!