What is the integration of (log(1+e^x))/e^x ?

1 Answer
Sep 7, 2016

Let I=intlog(1+e^x)/e^xdx

We will use the substn. e^x=t", so that, "e^xdx=dt, or, dx=dt/e^x=dt/t.

:. I=intlog(1+t)/t*dt/t=intt^-2log(1+t)dt

Now, we use the Rule of Integration by Parts (IBP) :

"(IBP) : "intuvdt=uintvdt-int((du)/dtintvdt)dt.

We take, u=log(1+t) rArr (du)/(dt)=1/(1+t), and,

v=t^-2 rArr intvdt=t^(-2+1)/(-2+1)=t^-1/-1=-1/t.

:. I=-1/tlog(1+t)-int{(1/(1+t))(-1/t)}dt

=-1/tlog(1+t)+int{1/((t(1+t))}dt

=-1/tlog(1+t)+int{(1+t-t)/((t(1+t))}dt

=-1/tlog(1+t)+int{(1+t)/(t(1+t))-t/(t(1+t))}dt

=-1/tlog(1+t)+int{1/t-1/(1+t)}dt

=-1/tlog(1+t)+lnt-ln(1+t)

=-1/e^xlog(1+e^x)+lne^x-ln(1+e^x)............".[as, "t=e^x]

=-log(1+e^x)/e^x+x-ln(1+e^x)

=x-(1/e^x+1)ln(1+e^x)+C.

To be continued...