What is the integration of (dx)/(x.sqrt(x^3+4))??

1 Answer
Mar 7, 2018

1/6 ln|{sqrt(x^3+4)-2}/{sqrt(x^3+4)+2}|+C

Explanation:

Substitute x^3+4=u^2. Then 3x^2dx=2udu, so that

dx/{x sqrt{x^3+4}} = {2udu}/{3x^3u} = 2/3 {du}/(u^2-4) = 1/6({du}/{u-2}-{du}/{u+2})

Thus

int dx/{x sqrt{x^3+4}} = 1/6 int ({du}/{u-2}-{du}/{u+2})=1/6 ln|{u-2}/{u+2}|+C
=1/6 ln|{sqrt(x^3+4)-2}/{sqrt(x^3+4)+2}|+C