What is the integral of this function?

int ((e^tan(3x))/(cos^2(3x)))dx (etan(3x)cos2(3x))dx

I'm confused about this problem

2 Answers
Apr 17, 2018

Is an inmediate integral. See below

Explanation:

You know that d(tanx)/dx=sec^2x=1/cos^2xdtanxdx=sec2x=1cos2x

You also know that inte^(u)u´du=e^(u)+C

Appliying this, we have

inte^(tan(3x))/cos^2(3x)dx=1/3e^(tan3x)+C

Apr 17, 2018

=e^tan(3x)+C

Explanation:

First
color(blue)(1/cos^2(3x)=sec^2(3x)

inte^tan(3x)/cos^2(3x)dx=inte^tan(3x)sec^2(3x)dx

color(blue)(d/dxtan(3x)=sec^2(3x)dx

color(blue)(inte^udu=e^u+C" " color(green)(tan(3x)=u" " "in this case"

Thus

inte^tan(3x)sec^2(3x)=e^tan(3x)+C