What is the integral of #int 1/(x^2+1)dx#? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer Harish Chandra Rajpoot Jul 7, 2018 #\int 1/{x^2+1}\ dx=\tan^{-1}(x)+C# Explanation: Let #x=\tan\theta\implies dx=\sec^2\theta\ d\theta# & #\theta=\tan^{-1}(x)# #\therefore \int 1/{x^2+1}\ dx# #=\int 1/{tan^2\theta+1}\ \sec^2\theta\ d\theta# #=\int \frac{\sec^2\theta\ d\thea}{\sec^2\theta}# #=\int d\theta# #=\theta+C# #=\tan^{-1}(x)+C# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 83238 views around the world You can reuse this answer Creative Commons License