What is the equation of the parabola that has a vertex at (-18, 2) (18,2) and passes through point (-3,-7) (3,7)?

1 Answer
Apr 26, 2017

In vertex form we have:

y=-1/25(x+18)^2+2y=125(x+18)2+2

Explanation:

We can use the vertex standardised form:

y=a(x+d)^2+ky=a(x+d)2+k

As the vertex ->(x,y)=(color(green)(-18),color(red)(2))(x,y)=(18,2)

Then (-1)xxd=color(green)(-18)" "=>" "d=+18(1)×d=18 d=+18

Also k=color(red)(2)k=2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

So now we have:

y=a(x+d)^2+k" "->" "y=a(x+18)^2+2y=a(x+d)2+k y=a(x+18)2+2

Using the given point of (-3,-7)(3,7) we substitute to determine aa

y=a(x+18)^2+2" "->" "-7=a(-3+18)^2+2y=a(x+18)2+2 7=a(3+18)2+2

" "-7=225a+2 7=225a+2

" "(-7-2)/225=a 72225=a

" "a=-1/25 a=125

Thus y=a(x+d)^2+k" "->" "y=-1/25(x+18)^2+2y=a(x+d)2+k y=125(x+18)2+2

Tony B