Assumption: Strait line passing through given points!
The left most point ->(5,12)→(5,12)
Standard form equation: y=mx+c" ............(1)"y=mx+c ............(1)
Where m is the gradient.
Let
(x_1,y_1)-> (5,12)(x1,y1)→(5,12)
(x_2,y_2)->(14,2)(x2,y2)→(14,2)
Then color(green)(m =("Change in y-axis")/("Change in x-axis") = (y_2-y_1)/(x_2-x_1)=(2-12)/(14-5) =(-10)/(9))m=Change in y-axisChange in x-axis=y2−y1x2−x1=2−1214−5=−109
As the gradient (m) is negative then the line 'slopes' downward from left to right.
Substitute value of (x_1,y_1)(x1,y1) for the variables in equation (1) giving:
12= (-10/9 times 5)+c12=(−109×5)+c
c= 12+(10/9 times 5)c=12+(109×5)
color(green)(c= 12 +50/9 -= 158/9)c=12+509≡1589
So y=mx+c -> color(blue)(y= (-10/9)x + 158/9)y=mx+c→y=(−109)x+1589
color(blue)(y=-1/9(10x-158))y=−19(10x−158)