[1]" "4/(a+1)-5/a=20/(a^2+a)[1] 4a+1−5a=20a2+a
Combine 4/(a+1)4a+1 and -5/a−5a by making them have the same denominator.
[2]" "(4(a))/(a(a+1))-(5(a+1))/(a(a+1))=20/(a^2+a)[2] 4(a)a(a+1)−5(a+1)a(a+1)=20a2+a
[3]" "(4(a)-5(a+1))/(a(a+1))=20/(a^2+a)[3] 4(a)−5(a+1)a(a+1)=20a2+a
[4]" "(4a-5a-5)/(a^2+a)=20/(a^2+a)[4] 4a−5a−5a2+a=20a2+a
[5]" "(-a-5)/(a^2+a)=20/(a^2+a)[5] −a−5a2+a=20a2+a
Multiply both sides by (a^2+a)(a2+a) to remove the denominator.
[6]" "cancel(a^2+a)((-a-5)/cancel(a^2+a))=cancel(a^2+a)(20/cancel(a^2+a))
[7]" "-a-5=20
[8]" "-a=25
[9]" "color(blue)(a=-25)