What is the domain of (4/(a+1))-(5/a) = (20/(a^2+a))(4a+1)(5a)=(20a2+a)?

1 Answer
Oct 26, 2015

a={-25}a={25}

Explanation:

[1]" "4/(a+1)-5/a=20/(a^2+a)[1] 4a+15a=20a2+a

Combine 4/(a+1)4a+1 and -5/a5a by making them have the same denominator.

[2]" "(4(a))/(a(a+1))-(5(a+1))/(a(a+1))=20/(a^2+a)[2] 4(a)a(a+1)5(a+1)a(a+1)=20a2+a

[3]" "(4(a)-5(a+1))/(a(a+1))=20/(a^2+a)[3] 4(a)5(a+1)a(a+1)=20a2+a

[4]" "(4a-5a-5)/(a^2+a)=20/(a^2+a)[4] 4a5a5a2+a=20a2+a

[5]" "(-a-5)/(a^2+a)=20/(a^2+a)[5] a5a2+a=20a2+a

Multiply both sides by (a^2+a)(a2+a) to remove the denominator.

[6]" "cancel(a^2+a)((-a-5)/cancel(a^2+a))=cancel(a^2+a)(20/cancel(a^2+a))

[7]" "-a-5=20

[8]" "-a=25

[9]" "color(blue)(a=-25)