What is the domain and range of y = (2x^2)/( x^2 - 1)?

1 Answer
Aug 7, 2017

The domain is x in (-oo,-1) uu (-1,1) uu (1,+oo)
The range is y in (-oo,0] uu (2,+oo)

Explanation:

The function is

y=(2x^2)/(x^2-1)

We factorise the denominator

y=(2x^2)/((x+1)(x-1))

Therefore,

x!=1 and x!=-1

The domain of y is x in (-oo,-1) uu (-1,1) uu (1,+oo)

Let's rearrage the function

y(x^2-1)=2x^2

yx^2-y=2x^2

yx^2-2x^2=y

x^2=y/(y-2)

x=sqrt(y/(y-2))

For x to a solution, y/(y-2)>=0

Let f(y)=y/(y-2)

We need a sign chart

color(white)(aaaa)ycolor(white)(aaaa)-oocolor(white)(aaaaaa)0color(white)(aaaaaaa)2color(white)(aaaa)+oo

color(white)(aaaa)ycolor(white)(aaaaaaaa)-color(white)(aaa)0color(white)(aaa)+color(white)(aaaa)+

color(white)(aaaa)y-2color(white)(aaaaa)-color(white)(aaa)color(white)(aaa)-color(white)(aa)||color(white)(aa)+

color(white)(aaaa)f(y)color(white)(aaaaaa)+color(white)(aaa)0color(white)(aa)-color(white)(aa)||color(white)(aa)+

Therefore,

f(y)>=0 when y in (-oo,0] uu (2,+oo)

graph{2(x^2)/(x^2-1) [-16.02, 16.02, -8.01, 8.01]}