What is the domain and range of h(x)=(x-1)/(x^3-9x) ?

1 Answer
Jul 12, 2018

Domain: x in (-oo,-3)uu(-3,0)uu(0,3)uu(3,oo)
Range : h(x) in RR or (-oo,oo)

Explanation:

h(x)=(x-1)/(x^3-9 x) or h(x)=(x-1)/(x(x^2-9) or

h (x)=(x-1)/(x(x+3)(x-3)

Domain: Possible input value of x , if denominator is

zero , the function is undefined .

Domain: x is any real value except x=0 , x =-3 and x=3 .

In interval notation:

x in (-oo,-3)uu(-3,0)uu(0,3)uu(3,oo)

Range: Possible output of h(x) .When x=1 ; h(x)=0

Range : Any real value of h(x) :. h(x) in RR or (-oo,oo)

graph{(x-1)/(x^3-9x) [-10, 10, -5, 5]}[Ans]