For the domain, what's under the square root sign is >=0≥0
Therefore,
4x-x^2>=04x−x2≥0
x(4-x)>=0x(4−x)≥0
Let g(x)=sqrt(x(4-x))g(x)=√x(4−x)
We can build a sign chart
color(white)(aaaa)aaaaxxcolor(white)(aaaa)aaaa-oo−∞color(white)(aaaaaaa)aaaaaaa00color(white)(aaaaaa)aaaaaa44color(white)(aaaaaaa)aaaaaaa+oo+∞
color(white)(aaaa)aaaaxxcolor(white)(aaaaaaaa)aaaaaaaa-−color(white)(aaaa)aaaa00color(white)(aa)aa++color(white)(aaaaaaa)aaaaaaa++
color(white)(aaaa)aaaa4-x4−xcolor(white)(aaaaa)aaaaa++color(white)(aaaa)aaaacolor(white)(aaa)aaa++color(white)(aa)aa00color(white)(aaaa)aaaa-−
color(white)(aaaa)aaaag(x)g(x)color(white)(aaaaaa)aaaaaa-−color(white)(a)acolor(white)(aaa)aaa00color(white)(aa)aa++color(white)(aa)aa00color(white)(aaaa)aaaa-−
Therefore
g(x)>=0g(x)≥0 when x in [0,4]x∈[0,4]
Let,
y=sqrt(4x-x^2)y=√4x−x2
hen,
y^2=4x-x^2y2=4x−x2
x^2-4x+y^2=0x2−4x+y2=0
The solutions this quadratic equation is when the discriminant Delta>=0
So,
Delta=(-4)^2-4*1*y^2
16-4y^2>=0
4(4-y^2)>=0
4(2+y)(2-y)>=0
Let h(y)=(2+y)(2-y)
We build the sign chart
color(white)(aaaa)ycolor(white)(aaaa)-oocolor(white)(aaaaa)-2color(white)(aaaa)#color(white)(aaaaaa)2#color(white)(aaaaaa)+oo
color(white)(aaaa)2+ycolor(white)(aaaa)-color(white)(aaaa)0color(white)(aaaa)+color(white)(aaaa)0color(white)(aaaa)+
color(white)(aaaa)2-ycolor(white)(aaaa)+color(white)(aaaa)0color(white)(aaaa)+color(white)(aaaa)0color(white)(aaaa)-
color(white)(aaaa)h(y)color(white)(aaaaa)-color(white)(aaaa)0color(white)(aaaa)+color(white)(aaaa)0color(white)(aaaa)-
Therefore,
h(y)>=0, when y in [-2,2]
This is not possible for the whole interval, so the range is y in [0,2]
graph{sqrt(4x-x^2) [-10, 10, -5, 5]}