What is the domain and range of f(x) = 1/(x + 3)?

1 Answer
Mar 14, 2017

The domain of is =RR-{-3}
The range is =RR-{0}

Explanation:

As you cannot divide by 0, x!=-3

The domain of f(x) is D_f(x)=RR-{-3}

To find the range, we need the domain of f^-1(x)

Let, y=1/(x+3)

x+3=1/y

x=1/y-3=(1-3y)/y

Therefore,

f^-1(x)=(1-3x)/x

The domain of f^-1(x) is D_(f^(-1))(x)=RR-{0}

So, the range is =RR-{0}