What is the derivative of this function y=sin^-1(1-x)^(1/2)?

1 Answer
Nov 30, 2016

dy/dx = -1/(2sqrt(x)sqrt(1-x)

Explanation:

Let y = arcsin(sqrt(1-x))
Then siny = sqrt(1-x) = (1-x)^(1/2)

Differentiating Implicitly and applying the chain rule;
cosydy/dx = (1/2)(1-x)^(-1/2)(-1)
:. cosydy/dx = -1/(2sqrt(1-x)) ... [1]

Then using the fundamental trig identity sin^2A+cos^2A-=1 we have:

cos^2y=1-sin^2y
cos^2y=1-((1-x)^(1/2))^2
:. cos^2y=1 - (1-x)
:. cos^2y=x
:. cosy=sqrt(x)

Substituting into [1] we get:
:. sqrt(x)dy/dx = -1/(2sqrt(1-x))

Leading to the solution:
:. dy/dx = -1/(2sqrt(x)sqrt(1-x)