What is the derivative of this function csc^-1(3x)?

1 Answer
Jul 4, 2017

d/(dx) (csc^-1(3x)) = color(blue)(-1/((sqrt(9-1/(x^2)))x^2)

Explanation:

We can use the chain rule...

d/(dx) (csc^-1(3x)) = (dcsc^-1(u))/(du) (du)/(dx)

where

u = 3x

and

d/(du) (csc^-1(u)) = -1/((sqrt(1-1/(u^2)))u^2):

= -(d/(dx)(3x))/((9sqrt(1-1/(9x^2)))x^2)

Factor out the constant, 3:

= -(3d/(dx)(x))/((9sqrt(1-1/(9x^2)))x^2)

Simplify the 3/9 quantity:

= -(d/(dx)(x))/((3sqrt(1-1/(9x^2)))x^2)

And the derivative of x is 1, according to the power rule:

= color(blue)(-1/((3sqrt(1-1/(9x^2)))x^2)

or

color(blue)(-1/((sqrt(9-1/(x^2)))x^2)