What is the derivative of (tan^-1 (x+2)/(1+2x))?

1 Answer

dy/dx=frac{1}{(1+2x)(x^2+4x+5)}-2/{(1+2x)^2} \tan^{-1}(x+2)

Explanation:

Given function:

y=\frac{\tan^{-1}(x+2)}{1+2x}

differentiating w.r.t. x using product rule as follows

dy/dx=\frac{d}{dx}(\frac{\tan^{-1}(x+2)}{1+2x})

=\frac{(1+2x)d/dx\tan^{-1}(x+2)-\tan^{-1}(x+2)d/dx(1+2x)}{(1+2x)^2}

=\frac{(1+2x)\frac{1}{1+(x+2)^2}-\tan^{-1}(x+2)(2)}{(1+2x)^2}

=frac{1}{(1+2x)(x^2+4x+5)}-2/{(1+2x)^2} \tan^{-1}(x+2)