What is the derivative of tan^-1(4x)tan1(4x)?

2 Answers
Apr 23, 2015

4/(16x^2 +1)416x2+1

Derivative of tan^-1 4xtan14x can be written using the formula for the derivative of tan^-1xtan1x = 1/(1+x^2)11+x2

d/dx tan^-1 4xddxtan14x = 1/(16x^2 +1) d/dx (4x)116x2+1ddx(4x)

= 4/(16x^2 +1)416x2+1

Apr 23, 2015

y=arctan(4x)y=arctan(4x)

tany=4xtany=4x

sec^2y*(dy)/(dx)=4sec2ydydx=4

(tan^2y+1)*(dy)/(dx)=4(tan2y+1)dydx=4

(16x^2+1)*(dy)/(dx)=4(16x2+1)dydx=4

(dy)/(dx)=4/(16x^2+1)dydx=416x2+1