What is the derivative of f(x)=(1-cos^2(5x))^3f(x)=(1cos2(5x))3 ?

1 Answer
Jan 15, 2018

f'(x)=30cos(5x)sin(5x)^5

Explanation:

f(x)=(1-cos^2(5x))^3

Using the identity sin^x+cos^2x-=1 we can get:

f(x)=(sin^2(5x))^3=(sin(5x)^2)^3=sin^6(5x)

f'(x)=d/(dx)[sin(5x)^6]

color(white)(XXll)=d/(dx)[sin(5x)]*6sin(5x)^(6-1)

u=5x

color(white)(XXll)=(d/(dx)[sinu]*d/(dx)[5x])*6sin(5x)^5

color(white)(XXll)=(cosu*5)*6sin(5x)^5

color(white)(XXll)=(5cos(5x))*6sin(5x)^5

color(white)(XXll)=30cos(5x)sin(5x)^5