What is the derivative of #f(t) = (t/(t+1) , 1/(t^2-t) ) #?

1 Answer
Jan 20, 2018

#(dy)/(dx)=((t+1)^2(-2t+1))/(t^2-t)^2#

Explanation:

We know that #x=t/(t+1)# and #y=1/(t^2-t)#

#(dy)/(dx)=(dy)/(dt)-:(dx)/(dt)#

#(dy)/(dt)=((t^2-t)d/dt[1]-1d/dt[t^2-t])/(t^2-t)^2#

#color(white)((dy)/(dt))=(0(t^2-t)-1(2t-1))/(t^2-t)^2#

#color(white)((dy)/(dt))=(-2t+1)/(t^2-t)^2#

#(dx)/(dt)=((t+1)d/dt[t]-td/dt[t+1])/(t+1)^2#

#color(white)((dx)/(dt))=(1(t+1)-t(1))/(t+1)^2#

#color(white)((dx)/(dt))=(t+1-t)/(t+1)^2#

#color(white)((dx)/(dt))=1/(t+1)^2#

#(dy)/(dx)=((-2t+1)/(t^2-t)^2)/(1/(t+1)^2)#

#color(white)((dy)/(dx))=((t+1)^2(-2t+1))/(t^2-t)^2#