What is the derivative of (arctan x)^3?

1 Answer
Mar 29, 2018

d/dx(arctanx)^3=3((arctanx)^2)/(1+x^2)

Explanation:

f(x)=(arctanx)^3

We can find the derivative f'(x) using the chain rule.

f'(x)=3(arctanx)^2*color(red)(d/dxarctanx)

The derivative of arctanx can be found on most tables that list derivatives of trigonometric functions.

d/dxarctanx=1/(1+x^2)

f'(x)=3(arctanx)^2*color(red)(1/(1+x^2))

f'(x)=3((arctanx)^2)/(1+x^2)