What is the derivative of Arctan(sqrt(5x))?

1 Answer
May 7, 2018

the answer
d/dx[Arctan(sqrt(5x))]=[5/(2sqrt5x)]/[1+5x]=sqrt(5)/(2sqrt(x)*(5x+1))

Explanation:

note that

d/dx[arctan(u)]=((du)/dx)/[1+u^2]

now let's derive Arctan(sqrt(5x))

d/dx[Arctan(sqrt(5x))]=[5/(2sqrt5x)]/[1+5x]=sqrt(5)/(2*sqrt(x)*(5*x+1))