What is the derivative of (arcsin x)^2?

1 Answer
Dec 27, 2016

The answer is =(2arcsinx)/(sqrt(1-x^2))

Explanation:

We need

(sqrtx)'=1/(2sqrtx)

(sinx)'=cosx

sin^2x+cos^2x=1

Let, y=(arcsinx)^2

sqrty=arcsinx

sin(sqrty)=x

(sin(sqrty))'=x'

1/(2sqrty)*cos (sqrty)dy/dx=1

dy/dx=2sqrty/cos(sqrty)

sin^2(sqrty)+cos^2(sqrty)=1

Cos^2(sqrty)=1-x^2

cos(sqrty)=sqrt(1-x^2)

Therefore,

dy/dx=(2arcsinx)/(sqrt(1-x^2))