What is the average value of the function u(x) = 10xsin(x^2)u(x)=10xsin(x2) on the interval [0,sqrt pi][0,π]?

1 Answer
Dec 20, 2016

See below.

Explanation:

The average value is

1/(sqrtpi-0) int_0^sqrtpi 10xsin(x^2) dx = 5/sqrtpiint_0^sqrtpi 2xsin(x^2) dx1π0π010xsin(x2)dx=5ππ02xsin(x2)dx

= 5/sqrtpi [-cos(x^2)]_0^sqrtpi=5π[cos(x2)]π0

= 12/sqrtpi=12π

Pedantic Note

(12sqrtpi)/pi12ππ does NOT have a rational denominator.