From the definition of average value of a function, we need to find
#1/(pi-1) int_1^pi e^-x * sinx dx#.
Evaluate #int e^-x * sinx dx# by parts.
Use #u = sinx# and #dv = e^-x dx# (Or the other way around. In this case, either will work.)
We get #du = cosx dx# and #v = -e^-x#.
#uv-int v du = -e^-xsinx + int e^-xcosxdx#
Repeat parts with #u = cosx# and #dv = e^-x dx# for this integral to get
#int e^-x * sinx dx = -e^-xsinx - e^-x-inte^-xsinx dx#.
Add the integral to both sides and divide by #2# then factor, to finish with
#int e^-x sinx dx = -1/(2e^x)(sinx+cosx)#.
Evaluating from #1# to #pi#, we get:
#int_1^pi e^-x sinx dx = -1/(2e^x)(sinx+cosx)]_1^pi#
# = 1/(2e^pi) + (sin(1)+cos(1))/(2e)#
# = (e+e^pi (sin(1)+cos(1)))/(2e^(pi+1))#.
Finally, divide by the length of the interval, to answer:
#1/(pi-1) int_1^pi e^-x sinx dx = (e+e^pi(sin(1)+cos(1)))/(2(pi-1)e^(pi+1))#.