What is the answer to this math question?

Use Taylor's power series for tan^-1x to evaluate:

lim_(x->0)(tan^-1x-x)/x^3

1 Answer
Jun 17, 2018

lim_(x->0)(arctanx-x)/x^3=-1/3

Explanation:

We want to find lim_(x->0)(tan^-1x-x)/x^3=0 using Taylor series

First, let tan^-1-= arctan

Now,

arctanx=x-x^3/3+x^5/5-x^7/7

so

lim_(x->0)(arctanx-x)/x^3

=lim_(x->0)(x-x^3/3+x^5/5-...-x)/x^3

=lim_(x->0)(-1/3+x^2/5-x^4/7...)

=-1/3