What is the angle between #<7,-3,1 > # and #< -2,8,-5 >#?
1 Answer
Feb 25, 2016
Explanation:
To calculate the angle between 2 vectors
#ula " and " ulb " use"#
#costheta = (ula . ulb)/(|ula||ulb|)# let
#ula = (7,-3,1) " and " ulb = (-2,8,-5) # (1) calculate the
#color(blue)" the dot product "ula . ulb "#
#ula . ulb = (7,-3,1) . (-2,8,-5) #
#= (7xx-2) + (-3xx8) + (1xx-5) = -14-24-5 = -43 # (2) calculate the
#color(blue) " magnitudes of " ula , ulb#
#|ula| = sqrt(7^2+(-3)^2+1^2) =sqrt(49+9+1) = sqrt59#
#|ulb| = sqrt((-2)^2+8^2+(-5)^2)=sqrt(4+64+25) =sqrt93#
#rArr theta = cos^-1((-43)/(sqrt59xxsqrt93)) = 2.19 " radians "#