color(blue)(sec(theta)*csc(theta)
We know
color(green)(sec(theta) =1/cos(theta)
color(green)(csc(theta) = 1/sin(theta)
color(blue)(sec(theta)*csc(theta) = 1/cos(theta)*1/sin(theta)
Note apply the Pythagorean identity
color(green)(cos^2(theta)+sin^2(theta) = 1
color(green)(=> sin^2(theta) = (1-cos^2(theta))
color(green)(=>sin(theta) = sqrt(1-cos^2(theta))
Our problem would become
sec(theta)*csc(theta) = 1/cos(theta)*1/sin(theta)
color(blue)(sec(theta)*csc(theta) = 1/cos(theta)*1/sqrt(1-cos^2(theta)
color(blue)(sec(theta)*csc(theta) = 1/(cos(theta)sqrt(1-cos^2(theta))