What is #int_-oo^oo 3/x dx#?
1 Answer
Nov 8, 2015
One might think of splitting this into two integrals at first:
#int_(-oo)^(0) 3/xdx + int_(0)^(oo) 3/xdx#
This integral is fairly easy as an indefinite integral if you recall the antiderivative of
#= ([3ln|0|] - lim_(x->-oo) ln|x|) + (lim_(x->oo) ln|x| - [3ln|0|])#
#= cancel(3ln|0|) - lim_(x->-oo) ln|x| + lim_(x->oo) ln|x| - cancel(3ln|0|)#
#= -3lim_(x->-oo) ln|x| + 3lim_(x->oo)ln|x|#
but since it is
#= 0*lim_(x->oo)ln|x|#
#= 0*oo#
#=># does not converge