What is #int ln(lnx)/x dx#? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer Sasha P. Nov 6, 2015 #lnxln(lnx)-lnx+C# Explanation: #lnx=t => 1/xdx=dt# #int (ln(lnx))/xdx=int lntdt# #lnt=u => du=dt/t# #dt=dv => v=t# #I=intlntdt = tlnt - inttdt/t=tlnt-intdt = tlnt-t+C# #I=lnxln(lnx)-lnx+C# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 1640 views around the world You can reuse this answer Creative Commons License