What is (costheta)/3 in terms of tantheta?

1 Answer
Dec 28, 2015

costheta/3=+-1/(3sqrt(tan^2theta+1)

Explanation:

We know that Sintheta/Costheta=Tantheta
impliesSin^2theta/cos^2theta=tan^2theta
impliescos^2theta=sin^2theta/tan^2theta
Also Sin^2theta=1-cos^2theta

implies cos^2theta=(1-cos^2theta)/tan^2theta

implies cos^2theta=1/tan^2theta-cos^2theta/tan^2theta

implies cos^2theta+cos^2theta/tan^2theta=1/tan^2theta

implies cos^2theta(1+1/tan^2theta)=1/tan^2theta

implies cos^2theta(1+1/tan^2theta)=1/tan^2theta

implies cos^2theta=(1/tan^2theta)/(1+1/tan^2theta)

implies cos^2theta=1/(tan^2theta+1)

implies costheta=+-sqrt(1/(tan^2theta+1))

implies costheta=+-1/sqrt(tan^2theta+1)

implies costheta/3=+-(1/sqrt(tan^2theta+1))/3

implies costheta/3=+-1/(3sqrt(tan^2theta+1)