What is (5sintheta)/25sinθ2 in terms of cotthetacotθ?

1 Answer
Dec 11, 2015

Write (5/2)sin x (52)sinx in terms of cot x.

Explanation:

Use the trig identity: sin^2 x = 1/(1 + cos^2 x)sin2x=11+cos2x
sin x = (1/(1 + cot x))^(1/2)sinx=(11+cotx)12
(5/2)sin x = (5/2)(1/(1 + cot^2 x))^(1/2) = [25/(4(1 + cot^2 x))]^(1/2)(52)sinx=(52)(11+cot2x)12=[254(1+cot2x)]12