What are the zeros of #x^3-8x-4#?
1 Answer
Explanation:
#f(x) = x^3-8x-4#
Descriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 0+2048+0-432+0 = 1616#
Since
Trigonometric method
We use a substitution
Let
Then:
#0 = f(x) = x^3-8x-4#
#=(k cos theta)^3 - 8 (k cos theta) - 4#
#=k (k^2 cos^3 theta - 8 cos theta) - 4#
#=4/3 sqrt(6) (32/3 cos^3 theta - 8 cos theta) - 4#
#= 32/9 sqrt(6) (4 cos^3 theta - 3 cos theta) - 4#
#= 32/9 sqrt(6) cos 3 theta - 4#
Add
#32/9 sqrt(6) cos 3 theta = 4#
Multiply both sides by
#64/3 cos 3 theta = 4 sqrt(6)#
Multiply both sides by
#cos 3 theta = 3/16 sqrt(6)#
So:
#3 theta = +-cos^(-1)(3/16 sqrt(6))+2kpi#
So:
#theta = +-1/3 cos^(-1)(3/16 sqrt(6))+(2kpi)/3#
So:
#cos theta = cos(1/3 cos^(-1)(3/16 sqrt(6))+(2kpi)/3)#
This takes three distinct values, for which we can use
Hence zeros of our original cubic:
#x_k = 4/3 sqrt(6) cos(1/3 cos^(-1)(3/16 sqrt(6))+(2kpi)/3) " " k = 0,1,2#
#x_0 ~~ 3.051374241731#
#x_1 ~~ -2.534070196723#
#x_2 ~~ -0.517304045008#