What are the six trig function values of #-405#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. Nov 2, 2015 Find the trig function ratio of (-405) Explanation: #sin (-405) = sin (-45 - 360) = sin (-45) = - sin 45 = - sqrt2/2# #cos (-405) = cos (-45 - 360) = cos (-45) = cos 45 = sqrt2/2# #tan (-405) = sin/(cos) = -1# #cot (-405) = -1# #sec (-405) = 1/(cos) = 2/sqrt2 = (2sqrt2)/2 = sqrt2# #csc (-405) = 1/(sin) = -2/sqrt2 = - (2sqrt2)/2 = - sqrt2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 6679 views around the world You can reuse this answer Creative Commons License