What are the six trig function values of #240#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Trevor Ryan. Nov 1, 2015 #sin240=sin(180+60)=-sin60=-sqrt3/2# #cos240=cos(180+60)=-cos60=-1/2# #tan240=tan(180+60)=tan60=sqrt3# #cosec240=1/(sin240)=-2/sqrt3# #sec240=1/(cos240)=-2# #cot240=(cos240)/(sin240)=1/sqrt3# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 9040 views around the world You can reuse this answer Creative Commons License