What are the six trig function values of #(16pi)/3#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. Nov 21, 2015 Find the 6 trig function values of #(16pi)/3# Explanation: Call #x = (16pi)/3.# #sin x = sin (pi/3 + (15pi)/3) = sin (pi/3 + pi) = -sin (pi/3) = -sqrt3/2# #cos x = cos (pi/3 + pi) = - cos pi/3 = -1/2# #tan x = sin x/(cos x) = (sqrt3/2)(2/1) = sqrt3# #cot x = 1/ (tan) = 1/sqrt3 = sqrt3/3# #sec x = 1/(cos) = -2/sqrt3 = - (2sqrt3)/3# #csc x= 1/(sin) = -2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 3620 views around the world You can reuse this answer Creative Commons License