What are the six trig function values of #150#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Bio Nov 3, 2015 #sin(150^o)=1/2# #cos(150^o)=-sqrt(3)/2# #tan(150^o)=-1/sqrt(3)# #csc(150^o)=2# #sec(150^o)=-2/sqrt(3)# #cot(150^o)=-sqrt(3)# Explanation: #sin(150^o)=sin(30^o)=1/2# #cos(150^o)=-cos(30^o)=-sqrt(3)/2# #tan(150^o)=frac{sin(150^o)}{cos(150^o)}=-1/sqrt(3)# #csc(150^o)=1/sin(150^o)=2# #sec(150^o)=1/cos(150^o)=-2/sqrt(3)# #cot(150^o)=1/tan(150^o)==-sqrt(3)# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 2248 views around the world You can reuse this answer Creative Commons License