What are the critical values, if any, of f(x)= (x-2)/(x^2-4)+2x?

1 Answer
Jan 7, 2017

The critical points are:

x= -2+- 1/sqrt(2)

Explanation:

We can simplify the function and remove one discontinuity noting that:

(x^2-4) = (x-2)(x+2)

hence:

f(x) = (x-2)/(x^2-4)+2x = (x-2)/((x-2)(x+2))+2x =1/(x+2) +2x

f'(x) = -1/((x+2)^2)+2

So we can find the critical points as roots of the equation:

-1/((x+2)^2)+2 = 0

1/((x+2)^2)= 2

(x+2)^2 = 1/2

x= -2+- 1/sqrt(2)

As:

f''(x) = 2/((x+2)^3)

we have:

f''(-2- 1/sqrt(2)) = 2/((-2- 1/sqrt(2)+2)^3)=-4sqrt(2) <0

f''(-2+ 1/sqrt(2)) = 2/((-2+ 1/sqrt(2)+2)^3)=4sqrt(2) >0

so x=-2- 1/sqrt(2) is a local maximum and x=-2+ 1/sqrt(2) is a local minimum.

graph{(x-2)/(x^2-4)+2x [-23.13, 16.87, -13.6, 6.4]}