The critical values will occur when the derivative is 0 or undefined.
f'(x) = (1(x^2+ x +1) - (x + 1)(2x + 1))/(x^2 + x + 1)^2
f'(x) = (x^2 + x + 1 - (2x^2 + 3x + 1))/(x^2 + x+ 1)^2
f'(x) = (-x^2 - 2x)/(x^2 + x + 1)^2
Set the derivative to 0 and solve. Also, find the vertical asymptotes (where the function is undefined).
0 = (-x^2 - 2x)/(x^2 + x+ 1)^2
0 = -x^2 - 2x
0 = -x(x + 2)
x = 0 and -2
For V.A:
(x^2 + x + 1)^2 = 0
x^2 + x + 1 = 0
x = (-1 +- sqrt(1^2 - 4 xx 1 xx 1))/(2 xx 1)
x = (-1 +- sqrt(-3))/2
:.There are no vertical asymptotes.
Hence, the critical numbers are x= 0 and x= -2.
Hopefully this helps!