What are the critical values, if any, of f(x)=2secx + tan x in[-pi,pi]?

1 Answer
Nov 26, 2016

x=-(5pi)/6,-pi/2,-pi/6,pi/2

Explanation:

Quickly showing the derivations for the derivatives of secx=1/cosx and tanx=sinx/cosx:

d/dxsecx=d/dx(1/cosx)

color(white)(d/dxsecx)=d/dx(cosx)^-1

color(white)(d/dxsecx)=-(cosx)^-2d/dx(cosx)

color(white)(d/dxsecx)=-1/cos^2x(-sinx)

color(white)(d/dxsecx)=1/cosx(sinx/cosx)

color(white)(d/dxsecx)=secxtanx

d/dxtanx=d/dx(sinx/cosx)

color(white)(d/dxtanx)=((d/dxsinx)cosx-sinx(d/dxcosx))/cos^2x

color(white)(d/dxtanx)=(cosx(cosx)-sinx(-sinx))/cos^2x

color(white)(d/dxtanx)=(cos^2x+sin^2x)/cos^2x

color(white)(d/dxtanx)=1/cos^2x

color(white)(d/dxtanx)=sec^2x

So, if f(x)=2secx+tanx, then:

f'(x)=2secxtanx+sec^2x

color(white)(f'(x))=(2sinx)/cos^2x+1/cos^2x

color(white)(f'(x))=(2sinx+1)/cos^2x

A critical value will occur when f'(x)=0 or when f' is undefined.

We note that f'(x)=0 when 2sinx+1=0. This means that sinx=-1/2. On the interval x in[-pi,pi] this means there are critical values at color(blue)(x=-pi/6,-(5pi)/6.

f' is undefined when cos^2x=0, so cosx=0. In the interval this is at color(blue)(x=-pi/2,pi/2.