What are the critical points of f(x,y)=sin(x)cos(y) +e^xtan(y)?

1 Answer
Mar 20, 2018

When cos(x-y)+e^x(-tan^2(y)+tan(y)-1)=0

Explanation:

We are given f(x,y)=sin(x)cos(y) +e^xtan(y)

Critical points occur when (delf(x,y))/(delx)=0 and (delf(x,y))/(dely)=0

(delf(x,y))/(delx)=cos(x)cos(y)+e^xtan(y)

(delf(x,y))/(dely)=-sin(x)sin(y)+e^xsec^2(y)

sin(y)sin(x)+cos(y)cos(x)+e^xtan(y)-e^xsec^2(y)=cos(x-y)+e^x(tan(y)-sec^2(y))=cos(x-y)+e^x(tan(y)-(1+tan^2(y)))=cos(x-y)+e^x(-tan^2(y)+tan(y)-1)

There is no real way to find solutions, but critical points occur when cos(x-y)+e^x(-tan^2(y)+tan(y)-1)=0

A graph of solutions is here